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Avda. España 1680, Casilla 110-V, Valparáıso, Chile
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Abstract: In this paper the Glauber-Gribov approach for deep-inelastic scattering (DIS)

with nuclei is developed in N=4 SYM. It is shown that the amplitude displays the same

general properties, such as geometrical scaling, as is the case in the high density QCD

approach. We found that the quantum effects leading to the graviton reggeization, give

rise to an imaginary part of the nucleon amplitude, which makes the DIS in N=4 SYM

almost identical to the one expected in high density QCD. We concluded that the impact

parameter dependence of the nucleon amplitude is very essential for N=4 SYM, and the

entire kinematic region can be divided into three regions which are discussed in the paper.

We revisited the dipole description for DIS and proposed a new renormalized Lagrangian

for the shock wave formalism which reproduces the Glauber-Gribov approach in a certain

kinematic region. However the saturation momentum turns out to be independent of

energy, as it has been discussed by Albacete, Kovchegov and Taliotis. We discuss the

physical meaning of such a saturation momentum Qs(A) and argue that one can consider

only Q > Qs(A) within the shock wave approximation.

Keywords: QCD Phenomenology, Phenomenology of Field Theories in Higher

Dimensions.

c© SISSA 2009

mailto:leving@post.tau.ac.il
mailto:jeremymi@post.tau.ac.il
mailto:boris.kopeliovich@usm.cl
mailto:ivan.schmidt@usm.cl
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
9
)
0
4
8

Contents

1. Introduction 1

2. Eikonal approximation for scattering with nuclei. 2

2.1 General approach 2

2.2 Nucleon amplitude in N=4 SYM 7

2.3 Eikonal formula in N=4 SYM 11

3. DIS with nuclei: general formulae 11

4. DIS with nuclei: ultra high energy limit 17

5. DIS with nuclei: graviton reggeization 18

5.1 z2 g2
0 s ≤ 1 21

5.2 z2 g2
0 s ≥ 1 but b2

0 ∝ z2 s ≤ 1/mgraviton ≤ R2
A 22

5.3 z2 g2
0 s ≥ 1 but b2

0 ∝ z2 s ≥ 1/mgraviton ≤ R2
A 23

6. DIS with nuclei: dipole model. 23

7. DIS in a shock wave approximation. 25

8. Conclusions 31

A. Shock wave approximation for DIS with our hypohesis on renormalized

Lagrangian 33

1. Introduction

The goal of this paper is very modest and pragmatic: to write a Glauber-type formula for

deep inelastic scattering (DIS) with a nucleus in N=4 SYM. N=4 SYM at weak couplings

is similar to our microscopic theory of QCD, with gauge colour group SU(Nc). The high

energy amplitude in this theory is given by the exchange of the BFKL Pomeron, like in

QCD [1]. On the other hand, the AdS/CFT correspondence [2] allows us to calculate this

amplitude in the strong coupling limit, where it reveals a Regge behavior (see ref. [3 – 5]

and references therein). Therefore, in principle, considering the high energy scattering

amplitude in N=4 SYM, we can guess what physics phenomena could be important in

QCD, in the limit of strong coupling.

The simplest and most informative process that allows to study physics in the region

between short distances and long distances, is DIS in the wide range of photon virtualities

Q. Since the typical distances are r ∝ 1/Q, we can approach the long distance physics at

small values of Q. In QCD, we see three different regions for DIS:

– 1 –
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1. Q2 ≫ Q2
s(x) where Q2

s(x) is the new scale: saturation momentum (see refs. [7 – 9]

and a short but beautiful review in ref. [10]). At such large Q2, we can use a linear

evolution equation, namely the DGLAP equation [11], and the BFKL equation [12],

and all advantages of the operator Product Expansion [13].

2. Λ2
QCD ≪ Q2 ≪ Q2

s(x). In this region the density of partons (gluons) is so

large that we cannot use here the methods of perturbative QCD. However, the QCD

couplings are still small here, since the typical distances in this kinematic region are

r ∝ 1/Qs(x), and Qs(x) ≫ ΛQCD . This fact allows us to suggest a theoretical

approach in this region, based on non-linear equations [14 – 16].

3. Q2 ≤ Λ2
QCD. No rigorous theoretical approach has been developed in this region in

QCD. In high energy phenomenology, we describe this region with the soft Pomeron.

However, quite a different phenomenological approach has been tried in this region,

namely, that the saturation scale determines the physics inside this domain, and

instead of the soft Pomeron, we can use the scattering amplitude in the saturation

region (see refs. [17, 18]). Our intention is to use the input from our N=4 SYM

experience, to penetrate this domain.

It turns out that N=4 SYM leads to normal QCD like physics in the first region, with

OPE and linear equations (see refs. [19]). It has been shown in ref. [10] that the DIS den-

sities reach saturation at some value of momentum (Qs(x)). However, the physical picture

inside the saturation domain turns out to be completely different [10], in the sense that

there are no partons in this region and the main contribution stems from diffractive pro-

cesses when the target (proton) either remains intact, or is slightly excited. Such a picture

not only contradicts the common wisdom, but also contradicts available experimental data.

In this paper we would like to develop a systematic approach to DIS with a nucleus,

based on the eikonal formula. In QCD the most reliable approach has been developed for

this particular case, since a new parameter appears αsA
1/3 ≈ 1, which allows to prove the

non-linear equation [15].

2. Eikonal approximation for scattering with nuclei.

2.1 General approach

It is well known that the eikonal approach is based on two main ideas [20, 21]. The first one

is the fact that the value of typical impact parameter for the interaction with a proton is

much smaller than the typical impact parameter for the nucleon distribution in a nucleus.

Using this idea, we can easily express the amplitude for interaction with a nucleus via

the interaction amplitude with a nucleon. Indeed, let us consider a simple example when

the amplitude of interaction with the nucleon is small. Consider for example deep inelastic

scattering (DIS) with a nucleon. The DIS amplitude for the virtual photon (γ∗) interaction

with the nuclear target (A), can be written as follows

A (γ∗A; s, b) =

∫

d2b′ A
(

γ∗N ; s, b′
)

S
(

~b −~b′
)

−→
∫

d2b′ A
(

γ∗N ; s, b′
)

S (b) (2.1)

– 2 –
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~p2 − ~q + ~k~p1 − ~k

~p2

−~p1 − ~p2

a) b)

~p ~p1~p − ~q

~q ~q − ~k

~P ~P + ~q ~P ~P + ~k

~k

−~p

Figure 1: The single (figure 1-a ) and double (figure 1-b) rescattering with heavy nucleus.

where S (b) is the distribution of nucleons in the nucleus, normalized as
∫

d2b S (b) =

A, where A is the number of nucleons in a nucleus. In eq. (2.1) we use the fact that

|~b − ~b′| ≈ RA ≫ RN ≈ b′. RA is the nucleus radius while RN is the nucleon size.
∫

d2b′ A (γ∗N ; s, b′) is equal to the forward scattering amplitude AN (s, t = 0). In the

original Glauber-Gribov approach it was assumed that AN (s, t = 0) at high energy is

mostly imaginary, and ImAN (s, t = 0) = σN
tot

1

The second important observation is the fact that at high energies the longitudinal and

transverse degrees of freedom are factorized in such a way, that in first approximation the

interactions with many nucleons in a nucleus will affect the transverse degrees of freedom

and the impact parameter distribution, but we can neglect the feedback of these interactions

on the momentum and the trajectory of the fast projectile. In other words, we can use the

eikonal approximation for high energy scattering.

To illustrate this point, let us consider the interaction of the fast particle with the

nucleus at rest, as it is shown in figure 1.

First we demonstrate that the momentum transferred q in figure 1, is transverse at

high energy. For the nuclear target, it is preferable to discuss a process in the rest frame

of a nucleus. Describing the nucleus in the non-relativistic approach, we consider that the

kinetic energy of a nucleon is much smaller than its momentum, namely, p2/2m ≪ |~p| ∼
1/RA where RA ≫ RN . Since after rescattering, the nucleon with momentum ~p − ~q is

still in the same nucleus, q0 = p0 − (p − q)0 = p2/2m − |~p − ~q|2/2m ≪ |~q|. In our frame,

s = 2E MA where E is the energy of the projectile, and MA is the mass of the nucleus.

At high energy, the momentum of the projectile is P = (E, 0, 0, E). Using the fact that

P 2 = m2
p and (P + q)2 = m2

p where mp is the mass of projectile, we obtain that

2P · q = −q2 ; q0 − qz = −q2/2E (2.2)

where z is the beam direction. Calculating q2 we have

q2 = (q0 + qz)(q0 − qz) − q2
⊥ = −q2/2E(2q0 + q2/2E)

E≫m−−−−→ −q2
⊥ (2.3)

1It should be noticed that such normalization of the amplitude is a bit unusual for high energy physics

since the amplitude, calculated from the Feynman diagrams, has a different normalization, namely,

ImA = s σtot. We call the first one as non-relativistic while the amplitude of Feynman diagrams will be

called relativistic.

– 3 –
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The expression for the diagram of figure 1-a has the following form

AA

(

s, q2
)

=

∫

d4p1

(2π)4i

1

m2 − p2 − iǫ
AN

(

s, q2
⊥; p2

1, (p − q)2
)

;
1

m2 − (p − q)2 − iǫ

×
∫ A−1
∏

i=1

d4pi

(2π)4i
Γ (p1; {pi})

1

m2 − p2
i − iǫ

Γ (p1 − q; {pi}) (2.4)

where Γ (p1; {pi}) is the vertex for the transition of the nucleus into A free nucleons.

Introducing a new variable for the energies of the nucleons, namely, p0,i ≡ MA/A − p̃0,i

and noticing that since p̃0,i has the interpretation of being the kinetic energy, we anticipate

very small values of p̃0,i ≪ |~pi|, and therefore we can neglect p̃2
0,i . Using this approach,

each propagator has the form

m2 − p2
i − iǫ =

(

− M2
A

A2
+ m2

)

+ 2p̃0,i
MA

A
+ |~pi|2 − iǫ

= m ε + 2p̃0,i m + |~pi|2 − iǫ for i < A

but m2 − p2 − iǫ =

(

− M2
A

A2
+ m2

)

− 2
A−1
∑

i=1

p̃0,i
MA

A
+ |~p|2 − iǫ

= m ε − 2

A−1
∑

i=1

p̃0,i m + |~p|2 − iǫ (2.5)

where ε = (MA − Am)/A is the bounding energy per one nucleon in a nucleus, which is

much smaller than the mass of the lightest hadron. One can see that all propagators for

i < A, have poles in p̃0,i in the upper semi-plane, while the A-th propagator has a pole in

the lower semi-plane. Closing the contour of integration over p̃0,i, on the poles in the lower

semi-plane, we obtain the following anticipated result, namely

AA

(

s, q2
)

=

∫ A
∏

i=1

d3pi

(2π)3
Γ (p1; {pi})

1

Aε − ∑A
i=1

|~pi|2
2m − iǫ

AN

(

s, q2
⊥; p2

1, (p − q)2
)

× 1

Aε − (~p1−~q)2

2m − ∑A
i=2

|~pi|2
2m iǫ

Γ (p1 − q; {pi}) (2.6)

The above calculation did not take into account the possible singularities in the nucleon

amplitude, since their positions are determined by the mass of hadrons p̃0,i ≈ mπ. Closing

the contour on these singularities, we obtain a smaller contribution of the order of 1/mπRA.

Introducing the wave function of the nucleus as follows

Ψ ({ri}) =

∫ A
∏

i=1

d3pi

(2π)3
ei~pi·~ri Γ (p1; {pi})

1

Aε − ∑A
i=1

|~pi|2
2m − iǫ

(2.7)

we can rewrite eq. (2.5) in the form

AA

(

s, q2; figure 1 − a
)

= AN

(

s, q2
⊥
)

∫ A
∏

i=1

d3 ri e
i~q⊥·~r1,⊥ |Ψ ({ri}) |2 (2.8)

→ AN

(

s, q2
⊥ = 0

)

∫ A
∏

i=1

d3 ri ei~q⊥·~r1,⊥ |Ψ ({ri}) |2 ≡ AN

(

s, q2
⊥ = 0

)

S
(

q2
⊥
)

– 4 –
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which is eq. (2.1) in momentum representation. In deriving eq. (2.8), we used the fact

that in S
(

q2
⊥
)

, the typical q⊥ ∝ 1/RA, which is much smaller than the characteristic q⊥
in the nucleon amplitude, and which can be considered to be a constant as far as the q⊥
dependence is concerned. Now we want to show that the diagram of figure 1-b leads to the

following contribution

AA (s, b; figure 1 − b) = i
1

2

(∫

d2b′AN

(

s, b′
)

)2

S2 (b) (2.9)

It turns out that eq. (2.9) can be obtained with the additional assumption that the wave

function can be factorized as

Ψ ({ri}) =

A
∏

i=1

Ψ (ri) , which gives S (b) =

∫

dz |Ψ (b, z) |2 , with ~r = (~b⊥, z). (2.10)

This means that there are no correlations between different nucleons in a nucleus. In other

words, we describe the nucleus as the nucleons that are moving in the external potential

in the spirit of the Hartree-Fock approach.

The amplitude for the diagram of figure 1-b has the form

AA

(

s, q2; figure 1−b
)

=

∫

d4k

(2π)4i

1

m2
p−(P +k)2

∫

d4p1

(2π)4i

d4p2

(2π)4i

A
∏

i=3

d4pi

(2π)4i
Γ (p1, p2, {pi})

× 1

m2 − p2
2 − iǫ

1

m2 − p2
i 1 − iǫ

AN

(

s, k2
⊥; p2

1, (p1 − k)2
)

;

× 1

m2 − (p1 − k)2 − iǫ
AN

(

s, (q − k)2⊥; p2
2, (p2 − q + k)2

)

× 1

m2−(p2−q+k)2−iǫ

1

m2−p2
i −iǫ

Γ(p1−k, p2−q+k, {pi}) (2.11)

We integrate first over the momentum k. Rewriting d4k as dk0d(k0 − kz)d
2k, and

closing the contour of integration over the variable k0 − kz , on the pole (P + k)2 = m2
p,

leads to a factor of 2πi/P0. For the integration over k0, we can also close the contour

on one of the poles: (p1 − k)2 = m2 or (p2 − q + k)2 = m2, which can be rewritten as

m ε + 2m (p̃0,1 − k0) − (~p1 − ~k)2 − iǫ = 0 and m ε + 2m (p̃0,2 − q0 + k0) − (~p2 − ~q + ~k)2.

This integration brings an additional factor of 2πi/2m. Therefore, the integration over k

leads to the following contribution, namely i d2k/((2π)2 s). Evaluating all the integrations

over p̃0,i in the same way as we did when calculating the diagram of figure 1-a, we reduce

eq. (2.11) to the following expression

AA

(

s, q2
⊥; figure 1 − b

)

=
i

s

∫

d2k

(2π)2

∫ A
∏

i=1

d3pi

(2π)3
Γ (p1; {pi})

1

Aε−∑A
i=1

|~pi|2
2m −iǫ

AN

(

s, k2
⊥; p2

1

)

×AN

(

s, (q − k)2⊥; p2
1

) 1

Aε − (~p1−~k)2

2m − (~p2−~q+~k)2

2m −∑A
i=3

|~pi|2
2m iǫ

Γ (p1 − q; {pi}) (2.12)

Eq. (2.12) can be easily rewritten in coordinate representation, by introducing the

wave function of eq. (2.7), namely

AA (s, b; figure 1 − b) =
i

s
A2

N

(

s, q2 = 0
)

∫

dz1

∫ z1

dz2 |Ψ (, b, z1; b, z2; {ri}) |2 (2.13)

– 5 –
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Y

Y1

0

a) b)

Figure 2: The first fan diagram (figure 2-a) for the interaction of Pomerons (reggeized gravitons)

and the eikonal diagram (figure 2-b).

Using the non-relativistic normalization for the scattering amplitude ( Anr = A/s)2

and eq. (2.10), we can see that we obtain eq. (2.9). It should be noted that the factor

1/2 stems from the z2 integration, which is not restricted in eq. (2.9), in contrast with

eq. (2.13). All calculations above have been done to illustrate two points, namely that we

do not need to assume that the nucleon amplitude should be pure imaginary, but we need

to assume a very simple model for the nuclei.

Calculating the amplitude for the interaction with any number of nucleons in a nucleus,

we obtain the simple formula for the nucleus scattering amplitude (see a more detailed

derivation in ref. [21]), namely,

AA (s, b) = i

(

1 − exp

(

i

∫

db′AN (s, b′)S (b)

))

(2.14)

In deriving eq. (2.1) we considered the propagators of the projectile and the target (nucleons

in a nucleus) in flat space but not in AdS5. In the next section we will comment on this but

the main argument is very simple: the trajectory of a fast moving particle can be replaced

by the straight line in curved space as well as in flat one. The second assumption was that

we considered in figure 1-b the projectile as the intermediate state.

Using the AdS/CFT correspondence we can estimate the accuracy of this (eikonal)

approach in the N=4 SYM case. Indeed, at first sight we can expect from the AdS/CFT

correspondence, that the main contribution will stem from the fan diagrams, the first of

which is shown in figure 2-a, as it happens in this theory in the region of small coupling

constant. In fact, from the region of small coupling we expect that (i) this diagram has

the contribution of the order of (α5
s/∆) s2∆, where ∆ ∝ αs is the intercept of the BFKL

Pomeron; (ii) the typical value of Y −Y1 ≈ 1/∆ ≫ 1 and (iii) the value of this contribution

is closely related to the process of diffractive dissociation of the projectile. Since Y −Y1 ≫ 1

it is reasonable to consider the exchange of the BFKL Pomeron. The eikonal diagram of

figure 2-b has the same order of magnitude but it turns out (see ref. [25]) that this diagram

is included in the diagram of figure 2-a in the region of integration Y − Y1 ≈ 1 where

we cannot use Pomeron exchange. Therefore, in the weak coupling limit the full set of

diagrams at high energy can be reduced to the ”fan” diagrams. It is worth mentioning

that in the weak coupling limit the eikonal diagram of figure 2-b has the same intermediate

2Starting from this equation we will use the notation AN and AA for the non-relativistically normalized

amplitudes, hoping that it will not lead to any misunderstanding.

– 6 –
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state as the initial one (the colourless dipole) since it turns out that colourless dipoles are

diagonalized by the interaction matrix (see ref. [29]).

In the strong coupling limit of N=4 SYM, due to the AdS/CFT correspondence, the

strong interaction of Pomerons is replaced by the weak interaction of the reggeized gravi-

tons, with intercepts ∆ = 1−2/
√

λ, and therefore in the triple Pomeron diagram the typical

value of Y −Y1 ≈ 1/(∆ = 1− 2/
√

λ) ≈ 1. It means that diffraction production, which can

contribute and was neglected in the eikonal (Glauber-Gribov) approach , is the process in

which low masses are produced. For Y −Y1 ≈ 1 there are no reasons to replace the ampli-

tude by the reggeized graviton exchange. Using the AdS/CFT correspondence we expect

that in the diagram of figure 2-b the same as the initial state is produced. On the other

hand, the process of diffraction production of low mass can be easily taken into account in

the eikonal approach, and does not change neither the energy nor the impact parameter

dependence that has been discussed here. The cross section of the diffraction dissociation

is proportional to the imaginary part of the reggeized graviton exchange which is small of

the order of 2/
√

λ. Therefore, at least within this accuracy ( 2/
√

λ), the exchange of two

gravitons between the projectile and the target (eikonal diagram of figure 2-b) prevails.

2.2 Nucleon amplitude in N=4 SYM

The main contribution to the scattering amplitude at high energy in N=4 SYM, stems

from the exchange of the graviton.3 The formula for this exchange has been written in

ref. [4, 6], (see also ref. [10] for its interpretation). In flat space this amplitude has the

following form

Ag(s, q) ∝ Tµν (p1, p2)Gµνµ ′ν ′ (q) Tµ ′ν ′ (p1, p2)
s≫q2

−−−→ s2 1

q2
⊥

(2.15)

where Tµ,ν is the energy-momentum tensor, and G is the propagator of the massless

graviton. The last expression in eq. (2.15), stems from the fact that for high energies,

Tµ,ν = p1,µp1,ν , and q2 = −q2
⊥ (see the previous section). However, we are interested in

N=4 SYM in a space with curvature, namely AdS5. AdSd+1 corresponds to an hyperboloid

in d + 2 flat space, namely

−Y 2
−1 + Y 2

0 +

d
∑

I=1

X2
i = −L2 (2.16)

with curvature R = −d(d − 1)L2. Introducing new coordinates

xi =
LXi

Y0 + Y−1
; z =

L2

Y0 + Y−1
; (2.17)

we reduce the introduced metric to the following form

ds2 =
L2

z2

(

dz2 +

d
∑

i=1

dx2
i

)

=
L2

z2

(

dz2 + d~x2
)

(2.18)

3Actually, the graviton in this theory is reggeized [3], but it is easy to take this effect into account (see

refs. [3, 5, 10]).

– 7 –
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In the flat d + 2 dimensional space, the scalar propagator is the following ( with

Y+ = Y0 + Y−1 and Y− = Y0 − Y−1)

G
(

Xi, Y+, Y−;X ′
i, Y

′
+, Y ′

−
)

=

∫ d
∏

i=1

dki

2π

dp+dp−
(2π)2

1
∑d

i=1 k2
i + p+p−

e−i~k· ~X−i 1
2
p+Y−−i 1

2
p−Y+

=

∫ ∞

0
dt

∫ d
∏

i=1

dki

2π

dp+dp−
(2π)2

exp

(

−tk2 − tp+p− − i~k · ~X − i
1

2
p+Y− − i

1

2
p−Y+

)

= (2π)−d/2−1

∫ ∞

0
dtt−d/2−1e−u/t t→1/ξ−−−−→ (2π)−d/2−1

∫ ∞

0
dξ(ξ)d/2−1e−ξu

= (2π)−d/2−1Γ (d/2) u− 1
2
d (2.19)

In eq. (2.19), u is a new variable which is equal to

u =
(z − z′)2 + (~x − ~x′)2

2 z z′
. (2.20)

In eq. (2.19), we re-write the integration measure of the momenta in d+2 dimensional

space, namely
∏d+2

i=1 dpi, as
∏d

i=1 dki dp+dp−, where p+ and p− are the conjugated momenta

to Y− and Y+, respectively.

However, the propagator of eq. (2.19) does not satisfy the correct boundary condition,

for example, G
(

Xi, Y+, Y−;X ′
i, Y

′
+, Y ′

−
)

should approach δ
(

~X − ~X ′
)

as z → z′, which is not

the case for this equation. One of the reasons why this happens, is that we have to guarantee

that Y+ > 0.4 The easiest way to impose such a condition, is to change eq. (2.19) to

G
(

Xi, Y+, Y−;X ′
i, Y

′
+, Y ′

−
)

=

∫ d
∏

i=1

dki

2π

dp+dp−
(2π)2

1
∑d

i=1 k2
i +p+p−

1

p−
e−i~k· ~X−i 1

2
p+Y−−i 1

2
p−Y+

=

∫ d
∏

i=1

dki

2π

dp+

(2π)2
1

k2

{

e
i k2

p+
Y+ − 1

}

e−i~k· ~X−i 1
2
p+Y− (2.21)

One can see from eq. (2.21) that
(

∑i=3
i=0 ∂2/∂2Xi + ∂2/∂2Y0 − ∂2/∂2Y−1

)

G
(

Xi, Y+, Y−;X ′
i, Y

′
+, Y ′

−
)

is defined only for Y+ > 0. Therefore, the solution of the

equation for the Green’s function also will be determined only for Y+ > 0.

Notice that the mass of the graviton is equal to zero even in the AdSd+1 space with

curvature. Having this in mind, the easiest way to find the correct propagator, is to write

the wave equation directly in the AdSd+1 space, assuming that the mass of the graviton

is equal to zero, and that G
(

Xi, Y+, Y−;X ′
i, Y

′
+, Y ′

−
)

is a function of the variable u of

eq. (2.20). The action for such a particle has the following form

S[φ] =
1

2

∫

ddx dz
√

g gµ,ν ∂µφ∂νφ (2.22)

4We thank Chung-I Tan for the fruitful discussion of all aspects of high energy scattering in N=4 SYM,

in particular, the Y+ > 0 condition.
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where the metric is given by eq. (2.18) . Using eq. (2.22) and eq. (2.18), it is easy to obtain

the wave equation for G
(

Xi, Y+, Y−;X ′
i, Y

′
+, Y ′

−
)

= G (u). It has the form [22 – 24]

1√
g

∂µ
√

g gµ.ν∂ν G(u) = 0 ; (2.23)

z2∇2
xG(u) + zd+1 ∂

∂z

[

z−d+1 ∂G(u)

∂z

]

= 0 ; (2.24)

u (u + 2)Gu,u (u) + (d + 1)Gu (u) = 0 ; (2.25)

The solution to eq. (2.25), which satisfies all the necessary boundary conditions:

G (u)
u→∞−−−→ 0 and G (u)

z→z′−−−→ δ (~x − ~x′) has the form [22 – 24, 6]

G (u) =
d − 1

2d+1

(

1

4π

) 1
2
d (

−2

u

)d

2F1

(

d,
1

2
(d + 1), d + 1,−2

u

)

(2.26)

As has been discussed (see eq. (2.15)), we need an expression for the propagator of

the graviton, which at high energy depends only on the transverse coordinates for the

scattering. Therefore, we need G (u) for AdS2+1, which is equal to

G3 (u) =
1

4π

1
{

1 + u +
√

u(u + 2)
}2 √

u(u + 2)
(2.27)

with

u =
(z − z′)2 + b2

2 z z′
(2.28)

where b is the impact parameter for the scattering amplitude.

For the eikonal formula, we need to evaluate the integral over b, which can be easily

done noticing that

d
{

1 + u +
√

u(u + 2)
}

/db2 =
1

2 z z′

{

1 + u +
√

u(u + 2)
}

√

u(u + 2)
(2.29)

The result is

G(z, z′) =

∫

d2bG3 (u) (2.30)

=
z z′

4

1
{

1+u(b = 0)+
√

u(b = 0)(u(b = 0)+2)
}2 = z z′

z2 z′2

(z2+z′2+|z2−z′2|)2

This equation provides us with the factor which enters into eq. (2.15), instead of 1/q2
⊥.

It turns out that in curved space we need to change [4]

s → s̃ =
s

√

g+−(z) g−+(z′)
=

zz′s
R2

. (2.31)
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For calculating the nucleon amplitude, we need to multiply eq. (2.30) by the coupling

constant, and integrate over the nucleon wave function [4, 6]. Therefore, the nucleon

amplitude is equal to

∫

d2bAN (s, b)= ig2
0s

∫

dz′zz′G(z, z′)|Φ(z′)|2 = ig2
0s

∫

dz′|Φ
(

z′
)

|2z′2 z2z′2

(z2+z′2+|z2−z′2|)2
z≪z′−−−→ ig2

0s

4
z4

∫

dz′|Φ
(

z′
)

|2 =
ig2

0Ncs

4
z4 (2.32)

Here g2
0 is the dimensionless constant, which is equal to κ2

5/2L
3, where κ5 is the five

dimensional gravity. g2
0 ∝ 1/N2

c where Nc is the number of colours. We do not know

anything about the nucleon wave function, except that the integral over z′ converges, and

it is proportional to Nc. Therefore, the amplitude is proportional to AN ∝ s/Nc and it is

small for sz2 < Nc . It grows and becomes of the order of 1 due to the reggeization of the

graviton. The graviton propagator in eq. (2.32) should be replaced by the propagator of

the Pomeron, in the way as has been suggested in refs. [3, 10, 5]. This modification for our

case is described in section 5. In eq. (2.32), we consider
∫

dz′|Φz′)2 = Nc .

As has been discussed, we use the propagator for a fast moving particle in the form

G
(

k+, k−;~b1 −~b2; z1 − z2

)

=
1

k+(k− − iǫ)
δ(2)

(

~b1 −~b2

)

δ (z1 − z2) (2.33)

Eq. (2.33) follows directly from eq. (2.21) . Indeed for large k+ the pole in the integrant of

eq. (2.21) is located at k− = (k2
⊥ − p+p− − iǫ)/k+ → 0 − iǫ. Therefore,

∑d
i=1 k2

i + p+p−
can be replaced by k+(k− + iǫ). Substituting this expression in eq. (2.21) one can see that

G
(

k+, k−;~b1 −~b2; z1 − z2

)

has the form of eq. (2.33) with an additional factor Θ(z1 + z2)

which is equal to 1.

Eq. (2.33) for G
(

k+, k−;~b1 −~b2; z1 − z2

)

can be derived directly from eq. (2.23) and

eq. (2.24). Indeed, going to Fourier transform for coordinates xi (i = 1, . . . , d) and to

Laplace transform for coordinate z we can rewrite eq. (2.24) in the form

k2 G̃′
p({ki}; p) − (d − 1) p G̃{ki}; p) −

(

p2 G̃({ki}; p)
)′

p
= 0 (2.34)

The solution to this equation has the form

G̃({ki}; p) =
1

k2 − p2

(

k2

k2 − p2

)
d−1
2

=
1

k+k− − k2
⊥ − p2

(

k+k− − k2
⊥

k+k− − k2
⊥ − p2

)

d−1
2

(2.35)

For large k+ eq. (2.35) leads to

G̃({ki}; p)
k+ ≪{k⊥ and p}−−−−−−−−−−−→ 1

k+ (k− − i ǫ)
(2.36)

Eq. (2.36) gives eq. (2.33) which we use in our calculations.
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2.3 Eikonal formula in N=4 SYM

Eq. (2.14) can be easily rewritten for the case of N=4 SYM in the following way using

eq. (2.32)

AA(s, b) = i

∫

d z |Φp(z)|2
{

1 − ei s
g2
0 Nc
4

z4 S(b)

}

(2.37)

where Φp is the wave function of the projectile. This formula is almost the same as the

eikonal formula for the hadron-nucleus interaction, except that the nucleon amplitude is

purely real in our case.

The scattering amplitude at fixed z

AA (s, b; z) = i

{

1 − ei s
g2
0 Nc
4

z4S(b)

}

(2.38)

can be rewritten in the following way:

AA (s, b; z) = sin

[

s
g2
0 Nc

4
z4 S (b)

]

+ i 2 sin2

[

s
g2
0 Nc

8
z4 S (b)

]

(2.39)

One can see that the real and imaginary part of the amplitude are of the same order

in contrast with the black disc behavior, for which only the imaginary part survives at

high energy. One can see that the amplitude of eq. (2.39) satisfies the following unitarity

constraint

2ImAA (s, b; z) = |AA (s, b; z) |2 (2.40)

Comparing eq. (2.40) with the general unitarity constraint, namely,

2ImA (s, b; z) = |A (s, b; z) |2 + Ginel (s, b; z)

one can see that eq. (2.39) leads to only elastic scattering at high energy, in direct contra-

diction with our intuition based on the parton approach.

For the general formula of eq. (2.37), eq. (2.40) means that

σtot = 2

∫

d2b

∫

d z |Φp(z)|2 Re

{

1 − ei s
g2
0 Nc
4

z4S(b)

}

=

σdiff + σel =

∫

d2b

∫

d z |Φp(z)|2
∣

∣

∣

∣

1 − ei s
g2
0 Nc
4

z4 S(b)

∣

∣

∣

∣

2

(2.41)

In other words, only the processes of diffractive dissociation contribute at high energy.

3. DIS with nuclei: general formulae

For calculating DIS, we need to specify the wave function of the projectile in eq. (2.39). In

N=4 SYM, the natural probe for DIS is R-current (R-boson) [19], and the wave function

for this probe satisfies eq. (2.24). However, in DIS we fix the virtuality of the probe (see

figure 3). It means that in terms of eq. (2.19),
∑d

i=1 k2
i = −Q2. Therefore, the wave
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R

R
R

gravitons

A

Q2Q2

Figure 3: DIS with the nuclear target. The wave line denotes the R current (R-boson), while the

zigzag lines show the graviton exchanges. Q2 is the virtuality of the probe.

function is described by eq. (2.24) with d = 0, but with ∇2
xΨ = −Q2Ψ, and the equation

can be rewritten in the form [19]

−z2 Q2ΨR
(

Q2, z
)

+ z
dΨR

(

Q2, z
)

dz
+ z2 d2ΨR

(

Q2, z
)

(dz)2
= 0 (3.1)

The solution to eq. (3.1) is

ΨR
(

Q2, z
)

= QzK1 (Qz) (3.2)

However, R - boson is a vector with d+1 components. The careful analysis of ref. [19]

shows that eq. (3.2) describes only d components of this vector, while the (d + 1)-th com-

ponent has a different dependence on Qz. Finally [10],

|Ψ
(

Q2, z
)

|2 =
(

K2
1 (Qz) + K2

0 (Qz)
)

z3 (3.3)

The deep inelastic structure function has the following form [19, 10]

F2

(

Q2, x = Q2/s
)

= (3.4)

= Cα′Q6

∫

d2b

∫

dzz3
(

K2
1 (Qz) + K2

0 (Qz)
)

2Re

{

1 − exp

(

i
g2
0Nc

4

Q2

x
z4S (b)

)}

where C is a dimensionless constant.

Changing the variable z to ζ = Qz, one can see that F2 can be written in the form

F2

(

Q2, x = Q2/s
)

= C Q2

∫

d2bΦ (τ(Q,x, b)) = (3.5)

= C Q2

∫

d2b

∫

dζ ζ3
(

K2
1 (ζ) + K2

0 (ζ)
)

Re

{

1 − exp

(

i
1

τ
ζ4

)}

where

τ =
Q2 x

g2
0Nc

4 S (b)
=

Q2

Q2
s

(3.6)

One can see that the DIS structure function shows the geometrical scaling behavior

with the saturation momentum, which we can find from the equation with τ = 1 . It is

equal to

Q2
s (x) = g2

0 Nc S (b) /(4x) ∝ A
1
3

Nc

1

x
(3.7)
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Therefore, F2 shows the same main features as F2 in high density QCD [7 – 9, 26],

namely the geometrical scaling behavior, large values of the saturation scale in the region

of low x, and the expected dependence of Q2
s ∝ A1/3. Actually, our analysis of Qs repeats

the one in ref. [10], and the difference between them stems from our integration over the

impact parameters.

One can see from figure 4 that the function Φ has the same behavior as we expected

from high density QCD, namely it approaches unity at small values of τ . Such a behavior

looks strange, especially if we compare this function with eq. (2.39), which leads to an

amplitude that oscillates between 0 and 2. Let us consider τ > 1. In this case, we can

replace the modified Bessel functions (McDonald functions) in eq. (3.5) by their asymptotic

expression, namely, Kn(ζ) −→
√

2π/ζ exp(−ζ), and in this case eq. (3.5) has the form

F2

(

Q2, x = Q2/s
)

= C Q2

∫

d2bΦ (τ(Q,x, b)) = (3.8)

= C 2π Q2

∫

d2b

∫

dζ ζ2 e−ζ Re

{

1 − exp

(

i
1

τ
ζ4

)}

The second term in {. . . } can be estimated by the saddle point method. One can

see that the saddle point value for ζ = ζSP = (−iτ/3)1/3, and the integral has the

following form

ΦSP(τ) = 1 −
√

π τ

12z2
SP

z2
SP e−(2/3)(iτ/3)1/3 −→ 1 (3.9)

One can see that at τ → 0, the exponent e−(2/3)(iτ/3)1/3 → 1, but the pre-exponential

factor ∝ τ5/6 vanishes. However, since ζSP ≪ 1, at small values of τ we have to use the

expression for the modified Bessel function at ζ → 0, namely Kn(ζ)
ζ→0−−−→ 1/ζn. Doing

this, one can see that ζ ∼ τ1/4 contributes to the integral leading to the behavior of the

second term in eq. (3.9) proportional to
√

τ .

The above discussion shows that predictions of high density QCD differ from those of

N=4 SYM, only in the way that Φ(τ) approaches unity, namely Φ−1 ∝ exp
(

−C ln2(1/τ)
)

in high density QCD, and Φ − 1 ∝ exp
(

−1
2 ln(1/τ)

)

, in our approach.

We need to integrate Φ (τ(b)) over b (see eq. (3.5)), to obtain the total cross section

for DIS

σtot (DIS) =
4π2

Q2
F2

(

Q2, x = Q2/s
)

(3.10)

= C

∫

d2bΦ (τ(b)) = 2π C

∫ ∞

τ(b=0)

dτ

τ

S (b(τ))

Sb2 (b(τ))
Φ (τ)

x→0−−−→ C πR2
A

∫ ∞

τ(b=0)≤ τmax

dτ
Φ (τ)

τ
R (τ) where R (τ) =

S (b(τ))

Sb2 (b(τ))

where τ = τmax is the position of the maximum of the function Φ(τ). The explicit form of

the function R(τ) depends on the dependence of S(b) on the impact parameter. We list
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Figure 4: The τ dependence of function Φ.

below this function for several nucleus models:

R (τ) =































τ cylindrical nucleus S(b) = (A/πR2
A)Θ (RA − b) ;

1 Gaussian form S (b) = (A/πR2
A) exp

(

−b2/R2
A

)

;

τ(b = 0)/τ3 spherical drop nucleus S (b) = (3A/4π2 R2
A)
√

R2
A − b2;

(3.11)

Unfortunately, in a realistic model of the nucleus with the Wood-Saxon form for the b

dependence, we cannot give a simple analytical form of the function R(τ). In figure 5 we

plot the integral over τ in eq. (3.10), for Gaussian b distribution. This distribution, being

oversimplified, leads to correct estimates for the average characteristics of nuclei.

From eq. (3.10), one can see that the total cross section for DIS will be

2πR2
A × ln(1/τ(b = 0)), once more in accordance with our expectation from high

density QCD for such S(b). In the case of the Wood-Saxon parameterization,

S (b)
b>RA−−−−→ exp (−b/h) which leads to σtot ∝ ln2(τ(b = 0). This behavior coincides with

the expectation of high density QCD.

Therefore, the Glauber-Gribov approach leads to a behavior of the DIS structure

function, which fully supports the high density QCD picture, reproducing the geometrical

scaling behavior, and the existence of only one new scale, namely the saturation momentum.

The main difference between N=4 SYM and high density QCD, lies only in the relation

between the total cross section and the cross section of diffractive dissociation. That is,

σtot (DIS) = σdiff (DIS) for N=4 SYM, and σtot (DIS) 6= σdiff (DIS) but σdiff
x→0−−−→ 1

2σtot

for high density QCD. In N=4 SYM, this equality means that the elastic cross section

is equal to zero, in sharp contradiction with QCD and any parton interpretation of high

– 14 –
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Figure 5: The integral over τ in eq. (3.10) as a function of τ(b = 0) for Gaussian dependence of

the nucleon density in nucleus versus the impact parameter.

energy scattering. However, this is a direct consequence of the fact that the graviton has

spin 2. Actually, it has been shown in ref. [3] that its spin in N-4 SYM is not exactly 2,

but rather jgraviton ≡ j0 = 2 − 2/
√

λ. Because of this, the amplitude of the interaction

with the nucleon is not purely real, as it is given by eq. (2.32), but it has an imaginary

part which is proportional to 2− j0. figure 6 illustrates how this imaginary part influences

the total and inelastic cross sections. We introduce the functions Φtot and Φin as

σtot =

∫

d2b Φtot (τ) and σin =

∫

d2b Φin (τ)

The functions Φtot and Φin are shown in figure 6, for the imaginary part of the graviton

exchange, which is 10% of the real part of the amplitude. One can see that such a small

imaginary part generates a large inelastic cross section, and therefore the DIS structure

function in N=4 SYM, with reggeized graviton, leads to a qualitative picture which is very

difficult to differentiate from the high density QCD predictions.

To complete the proof of eq. (3.8), we need to discuss the contributions from multi-

graviton exchanges in the nucleon amplitude. At first sight, they should be essential, since

each graviton exchange brings in a factor (see eq. (2.32))

AG
N (s, b) = ig0s

∫

dz′|Φ(z′)|2zz′G3(u)
b≫z′>z−−−−−→ 8ig0sz

4

∫

dz′|Φ(z′)|2z′4/
(

b2
)3

(3.12)

From eq. (3.12), one can see that the amplitude AG
N (s, b) ≫ 1 for b2 = b2

0 ∝
(

is z4
)1/3

.

This means that we need to take into account all terms of the order of
(

AG
N

)n
. Using the

eikonal formula for summing such terms, we see that for the nucleon amplitude we have
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Figure 6: The behavior of the total and inelastic cross sections for the graviton exchange with

10% imaginary part of the amplitude.

the following expression, instead of the simple formula of eq. (2.32),

∫

d2bAN (s, b) = (3.13)

=

∫

d2b
{

1−exp
(

AG
N (s, b)

)}

=

∫

d2b

{

1−exp

(

ig0s

∫

dz′|Φ(z′)|2zz′G3(u)

)}

The integral over b can be estimated as
∫

d2 bAN (s, b) ∝ C πb2
0 ∝

(

i s z4
)1/3

. Using

eq. (3.13), we can rewrite eq. (2.37) in the form

AA(s, b) = i

∫

d z |Φp(z)|2
{

1 − ei C′ πb20 S(b)
}

(3.14)

For DIS we have

F2

(

Q2, x=Q2/s
)

= (3.15)

= Cα′Q6

∫

d2b

∫

dzz3
(

K2
1 (Qz)+K2

0(Qz)
)

2Re
{

1−exp
(

iπC ′b2
0z

4S (b)
)}

where C and C ′ are dimensionless constants, whose values are irrelevant for our discussion.

Performing the integral over z using the asymptotic behavior of modified Bessel func-

tions and the saddle point approach, one can see that the saddle point value of z = zSP is

equal to

zSP =
Q3

i s S3 (b)
≈ Q2

iA s
(3.16)

where A is the number of the nucleons in a nucleus. The value of F2 in the saddle point is

F2 ∝ exp
(

−i const Q4/(sA)
)

(3.17)
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This formula, if correct, leads to a saturation scale Q2
s ∝ A/x, in drastic contradiction

with the prediction of high density QCD, both in the A and s dependencies. However, if

we come back to eq. (3.12), we obtain

AG
N (s, b) = 8ig0sz

4
SP

∫

dz′|Φ(z′)|2z′4/
(

b2
)3 ∝ is

(

Q3

As

)4

≪ 1 for s ≫ Q2(x → 0) (3.18)

From these estimates we conclude that the multi-graviton exchange does not contribute

to DIS with a nuclear target, at low x.

4. DIS with nuclei: ultra high energy limit

The result of the previous section is, however, valid only for a limited range of energy.

Indeed, we observe that the value of the typical impact parameters in the nucleon scattering

amplitude ( b2 = b2
0 ∝

(

is z4
)1/3

), grows with energy, and for energies larger than the energy

(s = scrit) when b0 ≥ RA, we cannot use the eikonal formula in the form of eq. (2.14).

Indeed, for such large energies, the main assumption of the Glauber-Gribov approach does

not work. This assumption has been discussed in eq. (2.8), which can be rewritten in the

following way in the case of one graviton exchange

AA (s, b) =

∫

d2b′ AN

(

s, b′
)

S
(

~b −~b′
)

→
∫

d2b′ AN

(

s, b′
)

S (b) (4.1)

In eq. (4.1), we assume that in the interaction with one nucleon, the typical impact

parameters are much smaller than RA, which gives the scale for the impact parameter

distribution in the nuclei. If the typical b in the nucleon interaction is larger than RA, we

have to use a different approximation, namely we need to rewrite eq. (4.1) in the form

AA (s, b) =

∫

d2b′ AN

(

s, b′
)

S
(

~b −~b′
)

→ AN (s, b)

∫

d2b′ S (b) = A AN (s, b) (4.2)

This equation leads to a new formula for the scattering amplitude with a nucleus, instead

of eq. (2.14), namely,

AA (s, b) = i ( 1 − exp (iAAN (s, b))) (4.3)

which leads to an expression for the DIS structure function in the form

F2

(

Q2, x=Q2/s
)

= (4.4)

= Cα′Q6

∫

d2b

∫

dzz3
(

K2
1 (Qz)+K2

0 (Qz)
)

2Re {1−exp (iAAN (s, b))}

where AN (s, b) is given by eq. (3.12). AN can be rewritten at large b, using eq. (2.3) and

eq. (3.12), in the form

AN (s, b; z) = i sin

[

s
g2
0 Nc

8
z4/(b2)3

]

+ 2 sin2

[

s
g2
0 Nc

16
z4/(b2)3

]

(4.5)
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Substituting eq. (4.5), we do the integral over z using the steepest decent method.

The most important part of the nucleon amplitude is the imaginary part, which leads to

a damping of the interaction matrix (S-matrix) at high energies, provided the amplitude

tends to unity. The saddle point for z is equal to

zSP = b2





Q

4As cos
[

g2
0 Nc

8 z4/(b2)3
]





1
3

(4.6)

Taking the integral using the steepest decent method we obtain

F2

(

Q2, x = Q2/s
)

∝ Q5

∫

d2b z2
SP

√
π

2 zSP

√
As

exp

(

−5/4 b2

(

− Q4

4As

)
1
3

)

(4.7)

where we replaced sines and cosines in eq. (4.5) and eq. (4.6), by unity since these functions

cannot change the energy and Q dependence of the resulting amplitude.

From eq. (4.7), one can see that the typical values of the impact parameters are large

and equal to

b2
0 = 4/(5QzSP) =

4

5

(

−4As

Q4

)
1
3

≫ z2
SP (4.8)

The resulting answer for F2 is the following

F2 = ∝ α′ Q2

(

As

Q2

)1
3

= α′ Q2 A
1
3 x− 1

3 (4.9)

Therefore, we see that we expect a very strange behavior from the point of view of

high density QCD, both as function of A and x. The origin is clear. N=4 SYM has a

massless particle, namely the graviton, and because of this the nucleon amplitude falls at

large b2 ≫ z2 + z′2, as a power of 1/(b2)3 . Such a power-like behavior leads to a typical

b which grows as a power of energy, (see ref. [30] for details), as has been demonstrated

above. However, as has been shown in refs. [3, 5], actually the graviton has a mass which

is not equal to zero if we dealing with the propagation of the graviton in AdS5. This

mass leads to a reggeization of the graviton, which has spin j0 = 2 − 2/
√

λ < 2, in the

scattering kinematic region where the square of the momentum transferred t is negative

(t < 0). The fact that there is no massless particle in the curved space means that at large

b, the amplitude should falls exponentially leading to a log energy dependence of the cross

section. This is the reason why in the next section we will discuss the exchange of the

reggeized graviton, and the Glauber- type formula which such an interaction induces.

5. DIS with nuclei: graviton reggeization

As has been discussed in ref. [5], for the exchange of the reggeized graviton we need to

replace eq. (2.32) by a more general expression, namely

∫

d2 bAN (s, b) = i g2
0

1

s̃

{

−
∫

d j

2π i

(

s̃j + (−s̃)j

sin πj

)
∫

d2b G3 (u, j)

}

(5.1)
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where

G3 (u, j) =
1

4π

(

1 + u +
√

u(u + 2)
)2−∆+(j)

√

u(u + 2)
(5.2)

with ∆+(j) = 2 +

√

4 + 2
√

λ(j − 2) = 2 +

√

2
√

λ (j − j0)

Using the definition of u given in eq. (2.28) and eq. (2.29), we can easily evaluate the

integral over b in eq. (5.1) with the following result
∫

d2bG3 (u, j) = zz′
1

2 − ∆+ (j)

(

1 + u(b = 0) +
√

u(b = 0) (u(b = 0) + 2)
)2−∆+(j)

(5.3)

The integral over j in eq. (5.1) is a contour integral, and the contour is located to the

right of all singularities of
∫

d2b G3 (u, j), but to the left of j = 2, and the contour can be

drawn to be parallel to the imaginary axis. In eq. (5.3), one can see that our singularity

in j stems from the zero of the factor 2 − ∆+ (j). Denoting
√

2
√

λ |j − j0| = ν, we can

rewrite the contribution of the square root singularity at j = j0 in the following way
∫

d2bAN (s, b) = g2
02zz′

(

cot
πj0

2
+ i

)

s̃j0−1 (5.4)

×
∫ iǫ+∞

iǫ−∞

dν√
λπ

exp
(

− ν2/(2
√

λ)

+iν ln
{

1+u(b = 0)+
√

u(b = 0) (u(b = 0)+2)
})

z>z′−−−→ g2
02zz′

(

cot
πj0

2
+i

)

s̃j0−1

∫ iǫ+∞

iǫ−∞

dν√
λπ

exp
(

−ν2/(2
√

λ)+iν ln
( z

z′

))

In the course of deriving eq. (5.4), we neglected in the signature factor the contribution

of the term ν2/(2
√

λ), considering it to be smaller than j0 (j0 ≫ ν2/(2
√

λ). The integral

in eq. (5.4) can be evaluated such that it reduces to the following expression

∫

d2bAN (s, b) = g2
02zz′

(

cot
πj0

2
+ i

)

s̃j0−1

√

2

π
√

λ ln s̃
exp

(

−
√

λ ln2(z′/z)

2 ln s̃

)

(5.5)

The result of eq. (5.5) is obtained assuming that λ is fixed, but s → ∞. From eq. (5.1),

eq. (5.2) and eq. (5.3), we can recover a different limit, namely λ → ∞ when s̃ ≫ 1.

Indeed, in this limit ∆+ → 4 + (
√

λ/2) (j − 2). Since 2−∆+(j) → (
√

λ/2) (j − 2), we can

close the contour on the pole which stems from 2 − ∆+(j) = 0. The signature factor can

be rewritten in the form
(

cot
πj0

2
+ i

)

λ→∞−−−→
√

λ

π
(5.6)

Collecting everything together we obtain
∫

d2 bAN (s, b) = g2
0 2 z z′

{

1 − i
2√
λ

} ∫

d2 b G3 (u, 2)

≡ g2
0 2 z z′

{

1 − i
2√
λ

}
∫

d2 b G3 (u) (5.7)
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t

j

m2
graviton

αgraviton(t)

0

j = 2

2/
√

λ

α′
graviton(0) m2

graviton = 2/
√

λ

Figure 7: The graviton(Pomeron) trajectory in N=4 SYM as it follows from ref. [3].

We have used eq. (5.7) in our estimates of the value of the imaginary part of the

nucleon scattering amplitude. eq. (5.7) leads to the exchange of the graviton with a small

imaginary part, and this case has been considered in detail in this paper.

We concentrate our efforts on the limit s̃ → ∞,λ = Const. For this region we need to

use eq. (5.4) for the nucleon amplitude. However, even more important for the high energy

behavior of the amplitude, is the fact that the graviton has a mass in curved space (see

figure 7). Therefore, the graviton trajectory which gives the dependence of the spin of the

graviton on its mass, has the intercept j0 = αgraviton(0) = 2 − 2/
√

λ, and the mass of the

graviton is equal to m2
graviton2/(

√
λα′

graviton).5 Therefore, in N=4 SYM all particles have

masses, and the graviton is the lightest one. In such a theory, the large b dependence is

determined by the mass of the lightest particle [31], namely AN (s, b) → exp (−mgraviton b).

This fact changes completely the ultra high energy behavior, that has been considered

in the previous section. Assuming that the graviton mass is small, we can distinguish

four different kinematic ranges of energy in the case if RA < 1/mgraviton; z2 g2
0s ≤ 1;

z2g2
0s ≥ 1, but b2

0 ∝ z2s ≤ R2
A; and R2

A ≤ b2
0 ∝ z2s ≤ 1/m2

graviton and b2
0 ∝ z2s

≥ 1/m2
graviton. Nevertheless, we believe that the mass of the graviton should be such

that RA ≫ 1/mgraviton if N=4 SYM pretends to describe the main features of the strong

interaction. Indeed, we know experimentally that the lightest hadron is the π meson, and

the large b dependence of the amplitude is proportional to exp (−b/2mπ). For a massive

graviton the amplitude falls as exp (−b/mgraviton). Therefore, to avoid contradiction with

experiment, we need to assume that mgraviton > 2mπ. Having this in mind, we will consider

a modification to our formulae of the previous sections for the Glauber - Gribov approach

in the case of the reggeized graviton, in three kinematic regions, which are z2 g2
0 s ≤ 1,

where we can restrict ourselves to the exchange of one graviton in the nucleon scattering

amplitude; z2 g2
0 s ≥ 1 but b2

0 ∝ z2s ≤ 1/mgraviton ≤ R2
A ( in this region the multi

graviton exchange could be essential); and the asymptotic region where z2 g2
0 s ≥ 1 but

b2
0 ∝ z2 s ≥ 1/mgraviton ≤ RA. Of course, we can consider the kinematic region where

(1/mgraviton ln s) ≥ RA, but in this region nuclei behave in the same way as the nucleons,

and we are not interested in this region.

5In the previous sections we called α
′
graviton just α

′.
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5.1 z2 g2
0 s ≤ 1

In this kinematic region we can restrict ourselves to one reggeized graviton (Pomeron)

exchange, and use eq. (5.5) instead of eq. (2.32). Therefore, we have

F2

(

Q2, x = Q2/s
)

= Cα′Q6

∫

d2b

∫

dzz3
(

K2
1 (Qz) + K2

0 (Qz)
)

2Re {1− (5.8)

− exp

(

ig2
0Nc

∫

dz′|Φ(z′)|22zz′
(

cot
πj0

2
+i

)

s̃j0−1

√

2

π
√

λ ln s̃
exp

(

−
√

λ ln2(z′/z)

2 ln s̃

)

S (b)

)}

Two features of eq. (5.8) are quite different from eq. (3.4), namely that the nucleon

amplitude has an imaginary part and shows a different z dependence. Roughly speaking,

in eq. (5.8), AN ∝ z2 instead of AN ∝ z4 in eq. (3.4). The integral over z in eq. (5.8) can

be evaluated using the steepest descent method. Using the asymptotic expression for the

modified Bessel function, we reduce eq. (5.8) to the following expression

F2

(

Q2, x = Q2/s
)

= (5.9)

Cα′Q5

∫

d2b

∫

z2dze−QzRe
{

1 − exp
(

ig2
0Ncξ(j0)s

j0−1(zz′)j0S (b)E
(

ln(z′.z)
))}

where E
(

ln(z′.z)
)

=

√

2

π
√

λ ln s̃
exp

(

−
√

λ ln2(z′/z)

2 ln s̃

)

and ξ(j) = i cot
πj0

2
− 1

Actually in eq. (5.9), we need to integrate over z′, but we assume that the typical

z′ ≈ 1/Λ, where Λ is a scale of hadrons (glueballs) in N=4 SYM, and we can replace it

with some average value.

It is convenient to introduce new dimensionless variables Q̂ = Qz′, ŝ = sz′2,Ŝ (b) =

z′2S (b), ẑ = z/z′, for which the equation for the saddle point reads as follows

Q̂ = g2
0 Nc ξ(j0) Ŝ (b) ŝj0−1 ẑj0−1

SP

(

j0 −
√

λ ln(1/ẑSP)

ln ŝ + ln ẑSP

)

E (ln(1/ẑSP)) (5.10)

Rewriting eq. (5.10) in the form

ln

(

Q̂

Ŝ (b)

)

= (j0 − 1) t −
√

λ (t − ln ŝ)2

2 t
+ w (ẑSP) (5.11)

where w is a smooth function of ẑSP, and t = ln (ŝ zSP). The approximate solution for t is

t± = ln ŝ − 1√
λ

ln

(

Q̂

Ŝ (b)
e−w(0)

)

±
√

−1 + j0√
λ

ln ŝ ;

ẑ±SP = exp

(

− 1√
λ

ln

(

Q̂

Ŝ (b)
e−w(0)

)

±
√

−1 + j0√
λ

ln ŝ

)

; (5.12)
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Using eq. (5.12), we find that the DIS structure function is proportional to

F2

(

Q2, x
)

∝ Q5 exp

(

−j0 − 1

j0
Q̂ẑSP

)

= Q5 exp

(

− (Q/Qs(x;A))
1− 1√

λ
−

q

j0−1√
λ

)

(5.13)

= Q5 exp



−j0 − 1

j0
Q̂

{

Q

g2
0Ncξ(j0)Ŝ (b)

}− 1√
λ

× ŝ
−

q

j0−1√
λ

×





j0 −
√

λ ln(1/ẑSP)
ln ŝ+ln ẑSP

√

2
π
√

λ(ln ŝ+ln ẑSP)





− 1√
λ







In eq. (5.13) we chose z−SP, since it gives a larger contribution. The saturation momen-

tum is equal to

Qs (x;A) =











j0

j0 − 1

(

1

x

)

q

j0−1√
λ
(

g2
0Ncξ(j0)Ŝ (b)

)
1√
λ





j0 −
√

λ ln(1/ẑSP)
ln ŝ+ln ẑSP

√

2
π
√

λ(ln ŝ+ln ẑSP)





− 1√
λ











1
j(λ)

(5.14)

where

with j(λ) = 1 − 1√
λ
−
√

j0 − 1√
λ

From eq. (5.14) one can see that F2 has a geometrical scaling behavior, if we neglect

the log dependence of the saturation scale. The most interesting result is the fact that

QS ∝ (S (b))
1√

λ j(λ) (1/x)

q

j0−1√
λ

1
j(λ) . At very large λ, the saturation momentum is constant

and does not depend on A and x. However, the A dependance is more suppressed, namely

A1/(3
√

λ), while the x dependence has a suppression, which is however a much weaker one

(1/x)λ
−1/4

. Such a behavior is similar to what we expect in high density QCD for the

running QCD coupling [32].

5.2 z2 g2
0 s ≥ 1 but b2

0 ∝ z2 s ≤ 1/mgraviton ≤ R2
A

In this kinematic region we have to take into account the multi-graviton interaction in the

nucleon scattering amplitude. At high energy, the exchange of one Pomeron (reggeized

graviton) induces an imaginary part of the amplitude, as has been discussed, which in-

creases with energy. Such an increase leads to a nucleon cross section of the order of

2πb2
0(x), where b0 can be estimated using the following equation

AG
N (s, z, b0) ≈ 1/2 (5.15)

The nucleon amplitude for single reggeized graviton exchange can be evaluated using

eq. (5.2) and the fact that u(b) → b2/(2zz′) at large b. Repeating the same procedure, we

obtain that (with b̂ = b/z′)

AG
N (s, z, b)

b2≥z2<z′2−−−−−−→ ẑ

b̂2
(̂s)j0−1 ẑj0−1 exp



−
√

λ ln2
(

2ẑ
b̂2

)

2(ln ŝ + ln ẑ)



 (5.16)
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From eq. (5.15) and eq. (5.16), we see that b̂2
0 ≈ ŝ ẑ2. Therefore,

F2 ∝ exp
(

−Q̂ẑ − Const S (b) ŝj0−1 ẑj0
)

(5.17)

which leads to small values of the typical ẑ = ẑSP, namely,

ẑSP =

(

ˆQ/S (b)
) 1

j0−1

j0 ŝ
(5.18)

At high energies, zSP is small, and the nucleon amplitude turns out to be small even

at small values of b. Therefore, we do not need to discuss this region separately, and the

answer is just the same as in the previous section.

5.3 z2 g2
0 s ≥ 1 but b2

0 ∝ z2 s ≥ 1/mgraviton ≤ R2
A

At such large impact parameters, we cannot use eq. (5.1) and eq. (5.5). The main contri-

bution in this region stems from the exchange of the lightest hadron (in our case of the

graviton) [31], which has the form given in eq. (2.15), and can be written as

A(s, b ≫ z′) ∝ i g2
0 s z4 exp (−mgraviton b) (5.19)

The typical impact parameter can be found from the equation A (eq. (5.19); s, b) ≈ 1/2,

which gives b0 = (1/mgraviton) ln
(

g2
0 z4 s

)

. Therefore for F2 we have

F2

(

Q2, x = Q2/s
)

= Cα′Q5

∫

d2b

∫

z2dze−QzRe (5.20)

×
{

1 − exp
(

ig2
0Ncξ(j0)2πS (b) (1/m2

graviton) ln2
(

g2
0z

4s
))}

In eq. (5.20), the main contribution stems from z ∝ 1/Q, which leads to

F2

(

Q2, x = Q2/s
)

= (5.21)

= Cα′Q2

∫

d2bRe

{

1 − exp

(

ig2
0Ncξ(j0)2πS (b) (1/m2

graviton) ln2

(

g2
0

1

Q2x

))}

One can see, that F2 ∝ α′ Q2 R2
A

(

ln ln
(

g2
0

1
Q2 x

))2
. However, such a behavior

is valid only in the restricted kinematic region when (1/mgraviton) ln
(

g2
0

1
Q2 x

)

< RA.

For higher energies, we loose all the specifications related to the nucleus, and the nucleus

interacts as a proton would do, but with the coupling constant g2
0 Nc A.

6. DIS with nuclei: dipole model.

In QCD, the DIS cross section can be written as a product of two factors [28, 29, 15],

namely the probability to find a dipole in the virtual photon, and the scattering amplitude

of the dipole with the target. In this way the DIS cross section is given by the expression

σtot

(

DIS;Q2, x
)

=

∫

d2r dζ

2π
d2b |Ψ (Q; r, ζ) |2 N (r, b, x) (6.1)
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where N is the imaginary part of the scattering amplitude of the dipole with size r off the

target, and ζ is the fraction of the energy carried by the quark of the dipole. We can try

to generalize this equation to N=4 SYM, namely,

σA
tot

(

DIS;Q2, x
)

=

∫

d2r dζ dz

2π
d2b |Ψ (Q; r, z, ζ) |2 NA (z, b, x) (6.2)

The factorization of eq. (6.1) is valid on very general grounds (see ref. [21]), and should

hold in any reasonable theory, since it is based on the structure of the interaction in time.

In eq. (6.2), we use the fact that the interaction due to the graviton exchange does not

depend on the size of the interacting particles, (see eq. (2.15)). We do not see any specific

features for the dipole - target interaction, and thus we should be able to use for the

nucleus amplitude (NA) the formulae that we have discussed in the previous sections. On

the boundary, Ψ (Q; r, ζ) is known and it is proportional to K1

(

Q̄ r
)

, or to K0

(

Q̄ r
)

, for

different polarizations of the virtual photon with Q̄2 = Q2ζ(1 − ζ). We can reconstruct

Ψ (Q; r, ζ) using the Witten formula [24], namely,

Ψ (Q; r, ζ) = (6.3)

Γ (∆)

πΓ (∆ − 1)

∫

d2r′
(

z

z2 + (~r − ~r′)2

)∆

K0

(

Q̄r′
)

with ∆± =
1

2

(

d ±
√

d2 + 4m2
)

Using the formulae 3.198, 6.532(4), 6.565(4) and 6.566(2) from the Gradstein and

Ryzhik tables, ref. [33], and using the Feynman parameter (t), we can rewrite eq. (6.3) in

the form

Ψ (Q; r, ζ) =
Γ (∆)

πΓ (∆ − 1)

∫

ξdξd2r′
J0

(

Q̄ξ
)

ξ2 + r′2

(

z

z2 + (~r − ~r′)2

)∆

(6.4)

=
Γ (∆ + 1)

πΓ (∆ − 1)

∫

ξdξd2r′
∫ 1

0

dt

z
t∆−1(1 − t)J0

(

Q̄ξ
)

×
(

z

tz2 + t(~r − ~r′)2 + (1 − t)r′2 + (1 − t)ξ2

)∆+1

=
Γ (∆ + 1)

π∆Γ (∆ − 1)

∫

ξ′dξ′
∫ 1

0
dtt∆−1J0

(

Q̄k
)

(

z

tz2 + r2t(1 − t) + ξ′2

)∆

=
1

π2∆−1Γ (∆ − 1)
z∆

∫ 1

0
dt

(

Q̄2

z2 + (1 − t)r2

)∆−1

K∆−1

(

Q̄
√

t(z2 + (1 − t)r2)
)

Using eq. (6.4), we can rewrite eq. (6.1) in the form

σtot

(

DIS;Q2, x
)

=

∫

d2rdζ

2π
d2bdz

{

1

π2∆−1Γ (∆ − 1)
z∆

∫ 1

0
dt

(

Q̄2

z2 + (1 − t)r2

)∆−1

× K∆−1

(

Q̄
√

t(z2+(1−t)r2)
)}2

Re

(

1−exp

(

i
g2
0Nc

4

Q2

x
z4S (b)

))

(6.5)

where we used the simple exchange of the graviton as in eq. (3.4). Using the asymptotical

expression for the modified Bessel function, we can do the integral over z in saddle point
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approximation, and the equation for the saddle point zSP has the following form

2
∑

i=1

Q̄ ti
√

ti(z2
SP + r2)

zSP + ig2
0Nc

Q2

x
z3
SP S (b) = 0 (6.6)

which leads to

zSP =

√

√

√

√

√

∑2
i=1

i Q̄ ti√
ti r2

g2
0Nc

Q2

x S (b)
∝
√

x

QS (b) r
≪ r (6.7)

In eq. (6.5),eq. (6.6) and eq. (6.7), we introduced two variables, t1 and t2, to describe

|Ψ (Q; r, ζ) |2. From eq. (6.7) and eq. (6.5), we obtain

σtot

(

DIS;Q2, x
)

=

∫

d2rdζ

2π
d2bd (z−zSP)

∫ 1

0

2
∏

i=1

dti√
ti

πΓ2 (∆)

π2Γ2 (∆ − 1)

(

zSPQ̄2

r2

)2∆−2
r3

Q̄
(6.8)

× exp

(

−
2
∑

i=1

Q̄
√

tir2

)











1−exp






i
g2
0Nc

4

Q2

x
S (b)







i
∑2

i=1
Q̄ti√
tir2

g2
0Nc

Q2

x S (b)







2















Introducing a new variable Q̃ = Q̄
∑2

i=1

√
ti, we can integrate over r using the steepest

decent method. The equation for the saddle point reads as follows

rSP =

(

i x

2 g2
0Nc S (b) Q̃

Q̃2

Q2

)
1
3

(6.9)

and

the second term in eq. (6.8)=−
∫

rSPd (r−rSP) dζ

2π
d2bd (z−zSP)

∫ 1

0

2
∏

i=1

dti√
ti

πΓ2 (∆)

π2Γ2 (∆−1)

×
(

zSPQ̄2

r2
SP

)2∆−2
r3
SP

Q̄
exp

(

−
(

−i
Q2

Q2
s

)
1
3

+i
3

2
g2
0Nc

Q2

x
S (b)

1

r4
SP

(r−rSP)
2

)

(6.10)

with

Q2
s =







2 g2
0Nc S (b)

x ζ4(1 − ζ)4
(

∑2
i=1

√
ti

)4






∝ A

1
3

Nc

1

x
(6.11)

Eq. (6.10) shows geometrical scaling behavior, at least to within exponential accuracy. The

saturation momentum of eq. (6.11), has expected from the high density QCD A dependence,

increases in the region of low x in the same way as for the DIS case, with the R current given

by eq. (3.7). In general, eq. (6.10) displays the same features as eq. (3.5), (see also eq. (3.9)).

7. DIS in a shock wave approximation.

The approach developed above, has to be compared with ref. [27], in which DIS with

a nucleus target was considered in the framework of the shock wave approximation. In
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this paper the usual decomposition of the DIS cross section into two factors given by

eq. (6.1)[28, 29, 15], which are the probability to find a dipole in the virtual photon, and

the amplitude of the scattering of the dipole with the target, is used (see eq. (6.1)) where

ζ is the fraction of energy carried by the quark of the dipole. In ref. [27] it is suggested to

study the dipole-target amplitude in the semiclassical limit of the dipole scattering, in the

presence of the shock wave that was produced by the nucleus, in the spirit of ref. [34]. In this

approach, the dipole is located at the boundary of the AdS5 space, and the two-dimensional

surface of the string is characterized by Xµ = Xµ(τ, σ), (with µ = 0, . . . , 4), which depends

on two coordinates (τ, σ). The string Nambu-Goto action takes the following form

SNG =

∫

dσdτL =
1

2πα′

∫

dτdσ
√

−detGα,β

where Gα,β = gµ,ν (X) ∂αXµ∂βXν , α, β = σ, τ (7.1)

In the presence of the heavy nucleus, the free metric of eq. (2.18) has to be altered in

order to take into account the energy-momentum tensor that describes the interaction of

the dipole string with the nucleus. The modified metric is given by

ds2 =
L2

z2

(

−2dx+dx− + (dx⊥)2 + dz2
)

+ T−−δ (x−) dx−dx− (7.2)

In eq. (7.2), we denote x± = x0±x3√
2

, where x0 is the time in the normal four dimen-

sional space. x4 ≡ z. In ref. [27], T−− µz2δ(x) , suggested in ref. [35], is used. Using this

assumption of ref. [27], the metric reduces to the expression

ds2 =
L2

z2

(

2dx+ dx− + µ z4 δ (x−) dx2
− + (dx⊥)2 + dz2

)

ds2 =
L2

z2

(

2dx+ dx− +
µ

a
Θ (x−) Θ (a − x−) z4 dx2

− + (dx⊥)2 + dz2
)

ds2 =
L2

z2

{

−
(

1 − µ

2a
z4
)

dt2 +
(

1 +
µ

2a
z4
)

(dx3)
2 + (dx⊥)2 + dz2

}

(7.3)

where a is chosen such that µ/2a = s2, and a ∼ 2RAΛ/p+ ∝ A1/3/p+ (see ref. [27]

for details). In the last line of this equation, we omit the theta functions, since we are

looking for the solution which does not depend on time (static solution [27]). The static

approximation is not well justified (see ref. [39], which appeared after the first version of

this paper we put on the net). However, the exchange of gravito, which interacts with

the energy-momentum tensor (see eq. (2.15)) and which is responsible for the mediation

of the gravitational force, is taken into account in this approximation. As we mentioned

above, the main goal of this section is to confront the Glauber-Gribov approach for dipole

-nucleus scattering, described in the previous section, with the static solution in the SW

approximation. Although at first glance the solution of ref. [27] does not reproduce the

result of the Glauber-Gribov approach (see below), we will argue, that by changing the

form of the Lagrangian of the string interaction with the nucleus, we are able to reproduce

the Glauber-Gribov formula, in the static solution. Therefore, although it is plausible that

one can learn some physics from the static solution, we believe however, that we can learn

no more than is already derived from the Glauber-Gribov approach.
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Using eq. (7.1), eq. (7.3) and the following parameterization of Xµ, namely X0 = t,

X1 = x, X2 = 0, X3 = 0 and X4 = z(x) as in ref. [27], the action S is found to be equal to

S =

∫ a
√

2

0
dt

∫ r/2

−r/2
dx Lstatic with Lstatic =

√
λ

2π

1

z2

√

(1 + z′2) (1 − s2 z4) (7.4)

From the Euler-Lagrange equation, which has the form (for the static solution)

∂

∂x

∂ Lstatic

∂z′
− ∂ Lstatic

∂z
= 0, (7.5)

as in ref. [27], the following solution is found

S (µ) =

√
λa

π c0

√
2

{

c2
0 r2

z3
max

− 2

zmax
+

2

zh

}

with c0 =
Γ2 (1/4)

(2π)3/2
and zh =

1√
s

(7.6)

while zmax is the solution to the equation

c0 r = zmax

√

1 − s2 z4
max (7.7)

The amplitude N in eq. (6.1) is equal to [27]

N (r, x) = Re {1 − exp (iS(µ))} (7.8)

Using eq. (6.1), the cross section for DIS has the form

σtot

(

DIS;Q2, x
)

=

∫

d2rdζ

2π
|Ψ (Q; r, ζ) |2N (r, x) ∝

∫

d2rdζ

2π
K2

0

(

Q̄r
)

N (r, x) (7.9)

In eq. (7.9), we omitted the integration over impact parameter, since in this simplified

string approach we consider that the nucleus has the infinite extension in the transverse

plane. As we have discussed above, such a simplified approach to the impact parameter

dependence could cause a lot of difficulties, since DIS cross sections depend on the impact

parameter distribution both in the nucleus and in the nucleon amplitude (see section 5). In

eq. (7.9) we simplified the wave function of the photon, which is known, by replacing it by

K0, since at large values of Q̄2 = Q2ζ(1−ζ), both components of the photon wave function

for transverse and longitudinal polarized photons have the same behavior exp
(

−2 Q̄ r
)

.

We expect that in DIS the typical r will be small, and therefore we try to find the

solution to eq. (7.7) for which m ≡ c4
0 r4 s2 ≪ 1. In this case, in ref. [27] three solutions

have been found, which correspond to three different Riemann sheets of the cubic root,

and which can be characterized by the index n = 0, 1, 2. They are

zmax
m→0−−−→ =



























1/
√

s for n = 0;

i/
√

s for n = 1;

c0 r for n = 2;

(7.10)
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The solution with n = 2 is the only one that matches the Maldacena result [36], for

which m → 0. For this solution, we can take the integral over r in the second term of

eq. (7.8) in eq. (7.9) by the steepest decent method, with the saddle point

rSP =

√

−i

√
λa

2
√

2πQ̄
(7.11)

One can see that

mSP = c4
0 r4

SP s2 =
c4
0 λ2 a2

8π2Q̄2
∝ λ2 A2/3

Q̄2
≪ 1 for Q̄2 ≫ λ2 A2/3 (7.12)

and, therefore, in the kinematic region Q̄2 ≫ λ2 A2/3, the second term of eq. (7.8) leads

to an approach of the unitarity bound for the DIS cross section of the following form

σtot

(

DIS;Q2, x
)

=

∫

d2r dζ

2π
|Ψ (Q; r, ζ) |2 − σII (7.13)

σII = exp

{

−
(

Qs

Q

)
1
2

}

(7.14)

where the pre-exponential factor can be easily calculated. The saturation momentum Qs

has the form

Qs =

√
λaQ2ζ(1 − ζ)

2
√

2 π
∝

√
λA1/3 x (7.15)

At large values of Q, eq. (7.15) leads to a term of the order of xA1/3λ/Qs, which corre-

sponds to the twist expansion, with the anomalous dimension γ = 1/2. The A dependence

is in accordance with this as well [37], but the x dependence looks strange. Qs → 0 at

x → 0, and therefore the theory predicts that for low x and Q̄2 ≫ λ2 A2/3, the DIS cross

section is very small.

It turns out that in the kinematic region Q̄2 ≪ λ2 A2/3, the n = 0 solutions gives the

largest contribution. Indeed, inserting this solution in eq. (7.6), one can find the saddle

point in the integration over r, which is equal to

rSP = −i
π
√

2Q̄

c0

√
λ a s3/2

∝ i
Q̄√

λA1/3
√

s
(7.16)

Evaluating m = c4
0 r2

SP s2, namely

m =
4π4Q̄4

λ2 A4/3
≪ 1 (7.17)

one can see that in the region where Q̄2 ≪ λ2 A2/3, we are dealing with small values of

m, and we can use the solution of eq. (7.10). Then σII in this case is proportional to

σII ∝ exp

(

−i
Q

Qs

)

with Qs = 4
c0

√
λa s3/2

π
√

2ζ(1 − ζ)
∝ A1/3

x
(7.18)
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The saturation momentum in eq. (7.18) displays all the typical properties that we

expect from high density QCD.

It is worthwhile mentioning, that the solution with n = 1 leads to σII ∝ exp
(

Q
Qs

)

,

with the same saturation momentum, and it can be selected out since σ should be positive.

Both eq. (7.14) and eq. (7.18) have in common the fact that z4
maxs

2 turns out to

be much smaller than unity ( z4
maxs

2 ≪ 1). It means that in the general equation for

the action of eq. (7.4), we can consider z4s2 to be small, and we expand the action with

respect to this parameter. In this case the contribution at high energy can be reduced to

the following action

Seikonal =

√
λ a s2

√
2π

∫ r/2

−r/2
dx z2

√

1 − z′2 = Const s A1/3

∫ r/2

−r/2
dx z2

√

1 + z′2 (7.19)

This action is closely related to the eikonal formula, as one can see from the second

term of eq. (7.19). Solving the Euler-Lagrange equation of eq. (7.5), we find that

1 + z′2 =
z4
max

z4
(7.20)

which leads to

zmax = i
Γ(1/4)√
π Γ(3/4)

(r/2) (7.21)

Evaluating the integration over x in eq. (7.19), we obtain the scattering amplitude in

the form

N (r, s) = Re

{

1 − exp

(

−Const A1/3

(

Γ(1/4)√
πΓ(3/4)

)2

s
(r

2

)3
)}

= Re
{

1 − exp
(

−κA1/3 s r3
)}

(7.22)

where we have absorbed all constant factors in the factor κ. It is easy to see that eq. (7.22)

leads to

σII ∝ exp

(

−i

(

Q

Qs

) 1
2

)

(7.23)

with Qs given by eq. (7.18). The difference between eq. (7.23) and eq. (7.18), as well as

the fact that eq. (7.14) does not hold, requires explanation. Referring back to eq. (7.19),

one can see that implicitly in Seikonal, we neglected the part of the action of eq. (7.4) which

does not depend on s. Since this contribution contains a factor of a ∝ 1/s in front, we

can expect that this contribution is negligible at high energy. However, the integral over

x can be divergent and compensates this smallness. In ref. [27], it was suggested that

a subtraction in the action would cancel the divergence at z → 0. The eikonal formula

suggests a different type of remedy for this divergence, namely to introduce the action in

the following way (compare with eq. (7.4))

S =

∫ ∞

−∞
dt

∫ r/2

−r/2
dx ∆Lstatic =

∫ a
√

2

0
dt

∫ r/2

−r/2
dx ∆Lstatic (7.24)

with ∆Lstatic = L (Tµν) − L (Tµν = 0)
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which leads to

∆Lstatic =

√
λ

2π

1

z2

√

(1 + z′2)
{

√

(1 − s2 z4) − 1
}

(7.25)

Eq. (7.24) has a simple meaning, which is that we need to subtract the term which is

responsible for the movement of the string in empty space during the period of time of the

interaction, from the interaction induced by the energy-momentum tensor of the nucleus.

One can see that the solution with the action given by eq. (7.24) and eq. (7.25), reproduces

eq. (7.23) (see appendix) .

Therefore, we can conclude that the shock wave approximation can be reproduced by

the eikonal formula. It should be stressed that the eikonal formula is more general, since in

the framework of this approach we are able to introduce the impact parameter dependence

as well as the quantum corrections related to the reggeized graviton (Pomeron, see section

5). It is worthwhile mentioning that in eq. (7.18) the shock wave approximation leads to

the same amplitude as eq. (6.10), in the dipole approach. However, it should be stressed

that the main result of ref. [27], that the dipole amplitude at high energy has a form

N(r) ∝ 1 − exp− rQs with Qs ∝ Const(x)A1/3 (7.26)

holds in the approach with the action given by eq. (7.24). Indeed, this result does not

depend on the modification of the Lagrangian since for z4S3 ≫ 1 the action is the same

in both approaches , namely,

S = i

∫ a
√

2

0
dt

∫ r/2

−r/2
dx

√
λ

2π
s
√

1 + z′2 → i Const(x)A1/3 r (7.27)

The last equation comes from the equation of motion which leads to z′ = 0. This saturation

momentum Qs(A) ∝ Const(x)A1/3 needs an explanation since it does not appear in the

Glauber-Gribov approach. First, the contribution of eq. (7.26) to the DIS cross section

(see eq. (6.1)) has the form

σ
(

DIS;Q2, x
)

=
π

Q2

{

1 +
π2

16

Qs(A)

Q
2F1

(

3

2
,
3

2
, 2,

Q2
s(A)

4Q2

)

−3F2

(

{1, 1, 1},
{

1

2
,
3

2

}

,
Q2

s(A)

4Q2

)}

(7.28)

For Q > Qs(A) σ
(

DIS;Q2, x
)

→ π/Q2 which corresponds to 1 in eq. (7.26). If we replace

K0 by its asymptotic behavior σ ∝ (1/Q2) × (1/(Q + Qs(A)). The physical meaning of

Qs(A) is rather obvious: during the passage of the dipole through the nucleus the transverse

momentum (Q) can get an additional momentum ∆Q due to elastic rescattering with the

nucleons , namely

∆Q ∝ qN
⊥ × number of collisions =

1

RN
A1/3 (7.29)

where qN
⊥ = 1/RN is the typical transverse momentum for elastic scattering with one

nucleon (RN is the nucleon radius). In the Glauber-Gribov approach, however, qN
⊥ ∝
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1/RA → 0 due to the nucleus form factor (see eq. (2.8)). In the shock wave approach the

nucleus wave function has not been taken into account and nucleons can have unrestricted

transverse momenta. Therefore, we consider this momentum as the artifact of the shock

wave model in which, we believe, we need to specify the DIS as scattering with Q > ∆Q ≈
Qs(A) if we are interested in finding the total cross section. However, this Qs(A) can

manifest itself in the inclusive production leading to the situation with two characteristic

momenta that has been advocated in ref. [38]. It should be stressed that eq. (7.29) is

written for a string with the fixed transverse coordinate (see eq. (7.4) X1 = x, X2 = 0). In

the general case ∆Q2 = 1
RN

A1/3. The second comment on eq. (7.29) is that we considered

the rescatterings which are instantaneous in accordance with the static solution. In the

region Q > Qs(A), the contribution, given by eq. (7.28), is small and the value of the total

cross section for DIS is determined by the saddle point approximation (see eq. (7.23)) which

is the same both in the shock wave approximation and in the Glauber-Gribov approach.

8. Conclusions

It is our common wisdom nowadays that N=4 SYM , which can be solved at large coupling

values, can provide us with some knowledge of what potentially lies in the confinement

region of QCD. However, the first analysis of high energy DIS scattering, performed in

refs. [3, 10], demonstrated that the high energy scattering in N=4 SYM looks quite dif-

ferent from what has been known so far. Contrary to the usual expectations based on

perturbative QCD and the parton model, that the main process at high energies is multi-

particle production, it was found in refs. [3, 10] that in N=4 SYM the major contribution

originates from quasi-elastic scattering. This also contradicts what is known from data.

The goal of this paper was to develop the Glauber-Gribov description of DIS on a

nuclear target within the N=4 SYM, which should help to see the key features of high

energy scattering in a more transparent way. For this purpose we employed the eikonal

approximation which has been developed for N=4 SYM in refs. [3 – 6, 10]. Our results can

be summarized as follows.

1. We derived the Glauber-Gribov formula (see eq. (2.41) and eq. (3.5)), and showed

that for the case of graviton exchange, this formula displays the same general

properties, such as the geometrical scaling behavior, as in the case of the high

density QCD approach.

2. We demonstrated that graviton exchange indeed leads to a total cross section which

is dominated by quasi-elastic re-scatterings. However, we found that the quantum

effects responsible for graviton reggeization give rise to an imaginary part of the

nucleon amplitude. This imaginary part, enhanced by multiple interactions, results

in a DIS which looks similar to one predicted by the high density QCD, (see figure 6).

3. We concluded that in N=4 SYM the impact parameter dependence of the amplitude

is essential, and the entire kinematic region can be divided into three regions. In

the first region (z2 g2
0Nc ≤ 1), we can use the eikonal formula with a single graviton
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or reggeized graviton exchange for the nucleon amplitude. In the second kinematic

region, z2 g2
0Nc ≥ 1 but b2

0 ∝ z2s < 1/m2
graviton < R2

A, the multi-graviton exchange

in the nucleon amplitude may become important. However, we found that this is

not the case and still the single graviton exchange dominates. In the third kinematic

region (z2 g2
0Nc ≥ 1 and 1/m2

graviton < b2
0 ∝ z2s < R2

A), the multi-graviton

exchanges in the nucleon amplitude must be included, and the related modification

to the amplitude are discussed in section 5.3.

In this paper, we considered mostly the DIS of the R current with the target. How-

ever, in the last two sections, we discussed the traditional approach to DIS based on the

factorization given by eq. (6.1). We considered DIS in two different ways. In the first

one we generalized the usual dipole formula to N=4 SYM. We derived the probability to

find a dipole in the virtual photon, in AdS5 space, and considered for the dipole scattering

amplitude the eikonal formula. In the second approach, we revisited the shock wave approx-

imation that has been developed for DIS in ref. [27], and we showed that in this formalism

we can also use the Glauber-Gribov approach for DIS in the region of r ≈ Q/A1/3√s .

However, the Glauber-Gribov approach suggests a different way to renormalize the inter-

action Lagrangian proposed in ref. [27]. After such modification of the original formalism

of ref. [27], both approaches, namely, the dipole model and the shock wave approximation

give the same result for r ≈ Q/(A1/3√s). We gave the interpretation of the appearance of

the new saturation momentum Qs(A) that does not depend on energy [27] and argue that

in the shock wave approximation we should consider only DIS with Q > Qs(A). For such

large values of Q the shock wave approximation with our modified Lagrangian reproduces

the same result as the Glauber-Gribov approach.

In general, we conclude that N=4 SYM does not lead to any obvious contradiction,

either with the high density QCD, or with experimental data. Therefore, we hope to learn

something valuable about the confinement region from the exact solution in N=4 SYM,

relying on the AdS/CFT correspondence.
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A. Shock wave approximation for DIS with our hypohesis on renormalized

Lagrangian

In this appendix we consider the shock wave approximation to DIS suggested in ref. [27],

with our hypothesis on the renormalised Lagrangian. As has been mentioned, we assume

that the static AdS5 renormalised lagrangian is the regular AdS5 lagrangian with a nu-

cleus present, minus the vacuum AdS5 lagrangian, where the nucleus is not present. The

expression to such a renormalised lagrangian is given by the following expression

Lren = L (Tµν) − L (Tµν = 0) = Lnuc − Lvac (A.1)

where Lnuc =

√
2λ

2π

1

z2

√

(1+z′2) (1−s2z4) and Lvac=

√
2λ

2π

1

z2

√

(1+z′2) (A.2)

The Euler - Lagrange equation for Lren takes the form;

∂Lren

∂ z
− ∂

∂ x

(

∂Lren

∂ z ′

)

= 0

⇒ ∂Lnuc

∂ z
− ∂Lvac

∂ z
− ∂

∂ x

(

∂Lnuc

∂ z ′

)

+
∂

∂ x

(

∂Lvac

∂ z ′

)

= 0 (A.3)

The various terms appearing in eq. (A.3) can be calculated from eq. (A.1), namely

∂Lnuc

∂z
= − 2

z

Lnuc

(1 − s2z4)

∂Lvac

∂z
= − 2

z
Lvac (A.4)

and
∂

∂x

(

∂Lnuc

∂z ′

)

=
∂

∂ x

(

z ′

1 + z ′ 2 Lnuc
)

=

(

z ′ ′

1 + z ′ 2 − 2z ′ 2z ′ ′

(1 + z ′ 2)2

)

Lnuc +
z ′ 2

1 + z ′ 2
∂Lnuc

∂z

+
z ′ z ′ ′

1 + z ′ 2
∂Lnuc

∂z ′

=

(

z ′ ′

1 + z ′ 2 − z ′ 2z ′ ′

(1 + z ′ 2)2

)

Lnuc +
z ′ 2

1 + z ′ 2
∂Lnuc

∂z
(A.5)

similarly
∂

∂x

(

∂Lvac

∂z ′

)

=

(

z ′ ′

1 + z ′ 2 − z ′ 2z ′ ′

(1 + z ′ 2)2

)

Lvac +
z ′ 2

1 + z ′ 2
∂Lvac

∂z
(A.6)

Plugging eq. (A.4), eq. (A.5) and eq. (A.6) into eq. (A.3) gives the result

1

1 + z ′ 2

(

∂Lnuc

∂ z
− ∂Lvac

∂ z

)

−
(

z ′ ′

1 + z ′ 2 − z ′ 2z ′ ′

(1 + z ′ 2)2

)

(

Lnuc − Lvac) = 0

⇒ − 2

z

Lnuc

(1 − s2z4)
+

2

z
Lvac − z ′ ′

1 + z ′ 2
(

Lnuc − Lvac) = 0

⇒ − 2

z

(

1 −
√

1 − s2z4
)

√
1 − s2z4

+
z ′ ′

1 + z ′ 2

(

1 −
√

1 − s2z4
)

= 0

⇒ 2
(

1+z ′ 2)−z z ′ ′
√

1−s2z4 =0 (A.7)
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Recall that one can express z ′ ′ as (1/2) ∂z ′ 2/∂z, hence eq. (A.7) simplifies to

2
(

1 + z ′ 2) =
1

2
z

∂z ′ 2

∂z

√

1 − s2z4 ⇒ dz ′ 2

1 + z ′ 2 =
dz

z

4√
1 − s2z4

(A.8)

Integrating between z′ (z) and z ′ (zm) = 0, where zm is an extremum point of the

string, one arrives at the result

z ′ 2 =

(

z

zm

)4
(

1 +
√

1 − s2z4
m

1 +
√

1 − s2z4

)2

− 1 (A.9)

From eq. (A.9), one can find that

H (ξ, ξm) ≡
∫ ξ

0

dξ′
√

(

ξ′

ξm

)4
(

1+
√

1−ξ4
m

1+
√

1−ξ′4

)2

− 1

=
√

s (x − r/2) (A.10)

where ξ =
√

sz. In eq. (A.10), the half of the string where z ′ > 0 is chosen, and we

integrated over x from −r/2 to x. The maximal value of ξ = ξm, can be found from the

following equation

H (ξm, ξm) = −√
s r/2 (A.11)

We have not yet found the expression for the function H (ξm, ξm) through known func-

tions, but the figure of figure 8 and figure 9 demonstrates the behavior of this function. The

key difference with the solution proposed in ref. [27] is the fact that H (ξm, ξm) of eq. (A.11)

has only one solution in the region of small ξm, while H (ξm, ξm) of ref. [27] has two solutions

(see figure 8). We can simplify the integrand by its expression at low ξ, namely,

HLow ξ (ξ, ξm) →
∫ ξ

0

dξ ′
√

ξ ′ 4/ξ4
m − 1

=

∫ ξ/ξm

0

dζξm
√

ζ4 − 1
(A.12)

Changing the integration variable to ζ2 = sin θ, then eq. (A.12) becomes;

HLow ξ (ξ, ξm) →=
i

2
ξm

∫ arcsin(ξ2/ξ2
m)

0

dθ√
sin θ

(A.13)

Finally changing the variable of integration once again to
√

sin θ = t, eq. (A.13)

reduces to

HLow ξ (ξ, ξm) → = i ξm

∫ ξ/ξm

0

dt√
1 − t2

= ellpt {arcsin (ξ/ξm) , 0}

=
√

s (x − r/2) (A.14)

where ellpt (φ, k) is the elliptic function defined as

ellpt (φ, k) =

∫ sinφ

0

dt√
1 − k2t2

√
1 − t2

(A.15)
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Figure 8: Function H (ξm, ξm) versus ξm for small values of ξm. The solid line shows the function

H (ξm, ξm) given by eq. (A.10), and the dotted line is the same function for the solution given in

ref. [27] while dashed line describes the approximation of eq. (A.12).
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Figure 9: Function H (ξm, ξm) versus ξm for large values of ξm. The solid line shows the function

H (ξm, ξm) given by eq. (A.10), dotted line is the approximation by eq. (A.16).

At large values of ξ, expanding the integrand at large values of ξ, we obtain

HHigh ξ (ξ, ξm) → i
ξ2
m

√

2 + 2
√

1 − ξ4
m

∫ ξ

0
dξ′ = i

ξ2
mξ

√

2 + 2
√

1 − ξ4
m

=
√

s (x − r/2) (A.16)

figure 8 and figure 9 show how the simplified equations (eq. (A.12) and eq. (A.16)), describe

the exact function H (ξm, ξm) given by eq. (A.10).
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Using eq. (A.12), one can easily see that eq. (7.4) with Lagrangian of eq. (A.1) repro-

duces eq. (7.23), which we obtain from the eikonal formula.
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